Generalisation of fluctuation-dissipation theorem to systems with absorbing states

Author:

Padmanabha PrajwalORCID,Azaele SandroORCID,Maritan AmosORCID

Abstract

Abstract Systems that evolve towards a state from which they cannot depart are common in nature. But the fluctuation-dissipation theorem (FDT), a fundamental result in statistical mechanics, is mainly restricted to systems near-stationarity. In processes with absorbing states, the total probability decays with time, eventually reaching zero and rendering the predictions from the standard response theory invalid. In this article, we investigate how such processes respond to external perturbations and develop a new theory that extends the framework of the FDT. We apply our theory to two paradigmatic examples that span vastly different fields—a birth–death process in forest ecosystems and a targeted search on DNA by proteins. These systems can be affected by perturbations which increase their rate of extinction/absorption, even though the average or the variance of population sizes are left unmodified. These effects, which are not captured by the standard response theory, are exactly predicted by our framework. Our theoretical approach is general and applicable to any system with absorbing states. It can unveil important features of the path to extinction masked by standard approaches.

Funder

Italian Ministry of University and Research

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3