Abstract
Abstract
Processing quantum information on continuous variables requires a highly nonlinear element in order to attain universality. Noise reduction in processing such quantum information involves the use of a nonlinear phase state as a non-Gaussian ancilla. A necessary condition for a nonlinear phase state to implement a nonlinear phase gate is that noise in a selected nonlinear quadrature should decrease below the level of classical states. A reduction of the variance in this nonlinear quadrature below the ground state of the ancilla, a type of nonlinear squeezing, is the resource embedded in these non-Gaussian states and a figure of merit for nonlinear quantum processes. Quantum optomechanics with levitating nanoparticles trapped in nonlinear optical potentials is a promising candidate to achieve such resources in a flexible way. We provide a scheme for reconstructing this figure of merit, which we call nonlinear squeezing, in standard linear quantum optomechanics, analysing the effects of mechanical decoherence processes on the reconstruction and show that all mechanical states which exhibit reduced noise in this nonlinear quadrature are nonclassical.
Funder
Horizon 2020 Framework Programme
Grantová Agentura České Republiky
Ministerstvo Školství, Mládeže a Tělovýchovy
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献