Abstract
Abstract
In this article we report on a novel way to incorporate complex network structure into the analysis of interacting particle systems. More precisely, it is well-known that in well-mixed/homogeneous/all-to-all-coupled systems, one may derive mean-field limit equations such as Vlasov–Fokker–Planck equations (VFPEs). A mesoscopic VFPE describes the probability of finding a single vertex/particle in a certain state, forming a bridge between microscopic statistical physics and macroscopic fluid-type approximations. One major obstacle in this framework is to incorporate complex network structures into limiting equations. In many cases, only heuristic approximations exist, or the limits rely on particular classes of integral operators. In this paper, we notice that there is a much more elegant, and profoundly more general, way available due to recent progress in the theory of graph limits. In particular, we show how one may easily enter complex network dynamics via graphops (graph operators) into VFPEs.
Funder
Volkswagen Foundation
European Commission
Deutsche Forschungsgemeinschaft
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献