Abstract
Abstract
Due to their high energy, hot electrons in quantum Hall edge (QHE) states can be considered as single particles that have the potential to be used for quantum optics-like experiments. Unlike photons, however, electrons typically undergo scattering processes in transport, which results in a loss of coherence and limits their ability to show quantum-coherent behaviour. Here we study theoretically the decoherence mechanisms of hot electrons in a Mach–Zehnder interferometer (MZI), and highlight the role played by both acoustic and optical phonon emission. We discuss optimal choices of experimental parameters and show that high visibilities of ≳ 85% are achievable in hot-electron devices over relatively long distances of 10 μm. We also discuss energy filtration techniques to remove decoherent electrons and show that this can increase visibilities to over 95%. This represents an improvement over Fermi-level electron quantum optics, and suggests hot-electron charge pumps as a platform for realising quantum-coherent nanoelectronic devices.
Funder
EMPIR 17FUN04 SEQUOIA
UK department for Business, Energy and Industrial Strategy
Engineering and Physical Sciences Research Council
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献