A multiscale wavelet algorithm for atom tracking in STM movies

Author:

Messer P K,Henß A-KORCID,Lamb D CORCID,Wintterlin JORCID

Abstract

Abstract High-speed scanning tunneling microscopy (STM) data have become available that provide movies of time-dependent surface processes. To track adsorbed atoms and molecules in such data automatic routines are required. We introduce a multiresolution wavelet particle detection algorithm for this purpose. To identify the particles, the images are decomposed by means of a discrete wavelet transform into wavelet planes of different resolutions. An ‘à trous’ low-pass filter is applied. The coefficients from the wavelet planes are filtered to remove noise. Wavelet planes with significant coefficients from the particles are multiplied, and the product is transformed into a binary particle mask. The precision of the method is tested with data sets of adsorbed CO molecules and O atoms on a Ru(0001) surface. The algorithm can safely detect and localize these particles with high precision, even in the presence of the enhanced noise characteristic for high-speed, constant-height STM data. By linking the particle positions, we obtain extended trajectories with a resolution of ∼0.5 Å or better allowing us to investigate the detailed motion of single atoms on a surface.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3