Identifying the graphene d-wave superconducting symmetry by an anomalous splitting zero-bias conductance peak

Author:

Huang Chuan-Shuai,Yang Yang,Tao Y CORCID,Wang JunORCID

Abstract

Abstract Not until recently, was a gate-tunable, high-temperature superconducting proximity effect in graphene demonstrated experimentally. And usually in d-wave superconductor (SC) hybrid structure, ferromagnetism and spin-triplet states could result in a splitting zero-bias conductance peak (ZBCP). Herein, we theoretically present an anomalous splitting ZBCP in a graphene-based ferromagnet/Rashba spin–orbit coupling (RSOC)/insulator/d-wave SC hybrid structure. With increasing the exchange field from h/E F = 0, the ZBCP starts to turn into a splitting one with a zero-bias conductance dip (ZBCD) sandwiched in between two subpeaks, while from h/E F = 1, the two subpeaks and ZBCD begin to gradually shrink till the ZBCP reappears. The anomalous splitting ZBCP can be modulated by the RSOC strength, magnitude of Fermi wave vector mismatch as well as insulator barrier strength. These peculiar features are ascribed to the novel spin-triplet Andreev reflection in the context of the RSOC, characteristic by the anisotropic d-wave pair symmetry combined with the relativistic nodal fermions, which in turn can be experimentally used to directly identify not only the proximity-induced ferromagnetism and RSOC but d-wave pair symmetry in graphene. These results pave the way to a new class of tunable, high-temperature superconducting spintronic devices based on large-scale graphene.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3