Abstract
Abstract
Photon number resolving (PNR) measurements are beneficial or even necessary for many applications in quantum optics. Unfortunately, PNR detectors are usually large, slow, expensive, and difficult to operate. However, if the input signal is multiplexed, photon ‘click’ detectors, that lack an intrinsic PNR capability, can still be used to realize photon number resolution. Here, we investigate the operation of a single click detector, together with a storage line with tunable outcoupling. Using adaptive feedback to adjust the storage outcoupling rate, the dynamic range of the detector can in certain situations be extended by up to an order of magnitude relative to a purely passive setup. An adaptive approach can thus allow for photon number variance below the quantum shot noise limit under a wider range of conditions than using a passive multiplexing approach. This can enable applications in quantum enhanced metrology and quantum computing.
Funder
Canada Research Chairs
Natural Sciences and Engineering Research Council of Canada
U.S. Department of Energy
Canada First Research Excellence Fund
National Science Foundation