van der Waals-corrected density functional study of electric field noise heating in ion traps caused by electrode surface adsorbates

Author:

Ray Keith GORCID,Rubenstein Brenda M,Gu Wenze,Lordi Vincenzo

Abstract

Abstract In order to realize the full potential of ion trap quantum computers, an improved understanding is required of the motional heating that trapped ions experience. Experimental studies of the temperature-, frequency-, and ion–electrode distance-dependence of the electric field noise responsible for motional heating, as well as the noise before and after ion bombardment cleaning of trap electrodes, suggest that fluctuations of adsorbate dipoles are a likely source of so-called ‘anomalous heating,’ or motional heating of the trapped ions at a rate much higher than the Johnson noise limit. Previous computational studies have investigated how the fluctuation of model adsorbate dipoles affects anomalous heating. However, the way in which specific adsorbates affect the electric field noise has not yet been examined, and an electric dipole model employed in previous studies is only accurate for a small subset of possible adsorbates. Here, we analyze the behavior of both in-plane and out-of-plane vibrational modes of twenty-one adsorbate–electrode combinations within the independent fluctuating dipole model, utilizing accurate first principles computational methods to determine the surface-induced dipole moments. We find the chemical specificity of the adsorbate can change the electric field noise by seven orders of magnitude and specifically that soft in-plane modes of weakly-adsorbed hydrocarbons produce the greatest noise and ion heating. We discuss the dynamics captured by the fluctuating dipole model, namely the adsorbate-dependent turn-on temperature and electric field noise magnitude, and also discuss the model’s failure to reproduce the measured 1/ω noise frequency scaling with a single adsorbate species. We suggest future research directions for improved, quantitatively predictive models based on extensions of the present framework to multiple interacting adsorbates.

Funder

Lawrence Livermore National Laboratory

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3