Planar microwave retroreflector based on transmissive gradient index metasurface

Author:

Liu Yong-QiangORCID,Li Sheng,Guo Jie,Li Liangsheng,Yin Hongcheng

Abstract

Abstract In this paper, a novel planar microwave retroreflector based on a transmissive gradient metasurface combined with a curved metal mirror is proposed and demonstrated. The transmissive metasurface can efficiently converge a wide-angle incident wave to a pre-designed curved metal mirror behind it with a proper distance, which acts as an effective reflective surface that can greatly enhance the backscattering of the incident wave with a wide-angle view. According to the full-wave simulations, the proposed metasurface retroreflector can perform an excellent retroreflective effect for incident microwaves of angle view between −30° and 30° range. A prototype was fabricated and the experimental results verify that the metasurface retroreflector can realize the monostatic radar cross section (RCS) enhancement with a continuous wide incident angle view from −30° to 30° at 10 GHz within a stable 3 dB RCS level. It is further demonstrated that the excellent wide-angle backscattering performance (absolute RCS enhancement value, operational bandwidth and/or incident angle view) of the proposed microwave metasurface retroreflector is competitive against the traditional trihedral corner reflector with comparable dimensions, thus opening up new possibilities to substitute the traditional bulky radar retroreflector by using a planar compact metasurface structure for microwave engineering. The presented microwave metasurface retroreflector is promising to develop into a low-profile, light weight and planar radar retroreflector which possesses tremendous RCS backscattering enhancement and wide-angle view operation range.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Backscattering-Enhanced Metasurface with Dual-Polarization Under Large-Angle Oblique Incidence;2023 International Applied Computational Electromagnetics Society Symposium (ACES-China);2023-08-15

2. Backscatter Enhancement Using a Programmable Metasurface;2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT);2023-07-21

3. Intelligent Jamming of Range Profile using Space-Time modulated Metasurface;2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT);2023-05-14

4. A broadband orbital angular momentum generator utilizing polarization conversion metasurface at microwave frequencies;Optik;2023-03

5. Wideband/Wide-Angle Planar Single-Layer Retroreflector Using Double Gradient Metasurfaces;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3