Abstract
Abstract
The paradigm of second-order phase transitions (PTs) induced by spontaneous symmetry breaking (SSB) in thermal and quantum systems is a pillar of modern physics that has been fruitfully applied to out-of-equilibrium open quantum systems. Dissipative phase transitions (DPTs) of second order are often connected with SSB, in close analogy with well-known thermal second-order PTs in closed quantum and classical systems. That is, a second-order DPT should disappear by preventing the occurrence of SSB. Here, we prove this statement to be wrong, showing that, surprisingly, SSB is not a necessary condition for the occurrence of second-order DPTs in out-of-equilibrium open quantum systems. We analytically prove this result using the Liouvillian theory of DPTs, and demonstrate this anomalous transition in a paradigmatic laser model, where we can arbitrarily remove SSB while retaining criticality, and on a Z
2-symmetric model of a two-photon Kerr resonator. This new type of PT cannot be interpreted as a ‘semiclassical’ bifurcation, because, after the DPT, the system steady state remains unique.
Subject
General Physics and Astronomy
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献