Abstract
Abstract
We examine the usefulness of applying neural networks as a variational state ansatz for many-body quantum systems in the context of quantum information-processing tasks. In the neural network state ansatz, the complex amplitude function of a quantum state is computed by a neural network. The resulting multipartite entanglement structure captured by this ansatz has proven rich enough to describe the ground states and unitary dynamics of various physical systems of interest. In the present paper, we initiate the study of neural network states in quantum information-processing tasks. We demonstrate that neural network states are capable of efficiently representing quantum codes for quantum information transmission and quantum error correction, supplying further evidence for the usefulness of neural network states to describe multipartite entanglement. In particular, we show the following main results: (a) neural network states yield quantum codes with a high coherent information for two important quantum channels, the generalized amplitude damping channel and the dephrasure channel. These codes outperform all other known codes for these channels, and cannot be found using a direct parametrization of the quantum state. (b) For the depolarizing channel, the neural network state ansatz reliably finds the best known codes given by repetition codes. (c) Neural network states can be used to represent absolutely maximally entangled states, a special type of quantum error-correcting codes. In all three cases, the neural network state ansatz provides an efficient and versatile means as a variational parametrization of these highly entangled states.
Funder
National Science Foundation
Draper’s Company Research Fellowship
Subject
General Physics and Astronomy
Reference82 articles.
1. Quantum cryptography: public key distribution and coin tossing;Bennett,1984
2. Communication via one- and two-particle operators on einstein-podolsky-rosen states;Bennett;Phys. Rev. Lett.,1992
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献