Modelling co-evolution of resource feedback and social network dynamics in human-environmental systems

Author:

Saeedian MeghdadORCID,Tu ChengyiORCID,Menegazzo FabioORCID,D’Odorico PaoloORCID,Azaele SandroORCID,Suweis SamirORCID

Abstract

Abstract Games with environmental feedback have become a crucial area of study across various scientific domains, modelling the dynamic interplay between human decisions and environmental changes, and highlighting the consequences of our choices on natural resources and biodiversity. In this work, we propose a co-evolutionary model for human-environment systems that incorporates the effects of knowledge feedback and social interaction on the sustainability of common pool resources (CPRs). The model represents consumers as agents who adjust their resource extraction based on the resource’s state. These agents are connected through social networks, where links symbolize either affinity or aversion among them. The interplay between social dynamics and resource dynamics is explored, with the system’s evolution analyzed across various network topologies and initial conditions. We find that knowledge feedback can independently sustain CPRs. However, the impact of social interactions on sustainability is dual-faceted: it can either support or impede sustainability, influenced by the network’s connectivity and heterogeneity. A notable finding is the identification of a critical network mean degree, beyond which a depletion/repletion transition parallels an absorbing/active state transition in social dynamics, i.e. individual agents and their connections are/are not prone to being frozen in their social states. Furthermore, the study examines the evolution of the social network, revealing the emergence of two polarized groups where agents within each community have the same affinity. Finally, we observe an inverse relationship between system complexity and sustainability. Comparative analyses using Monte–Carlo simulations and rate equations are employed, along with analytical arguments, to reinforce the study’s findings. The model successfully captures key aspects of the human-environment system, offering valuable insights to understand how both the spread of information and social dynamics may impact the sustainability of CPRs.

Publisher

IOP Publishing

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3