Helical close-packing of anisotropic tubes

Author:

Greenvall Benjamin RORCID,Grason Gregory MORCID

Abstract

Abstract Helically close-packed states of filaments are common in natural and engineered material systems, ranging from nanoscopic biomolecules to macroscopic structural components. While the simplest models of helical close-packing, described by the ideal rope model, neglect anisotropy perpendicular to the backbone, physical filaments are often quite far from circular in their cross-section. Here, we consider an anisotropic generalization of the ideal rope model and show that cross-section anisotropy has a strongly non-linear impact on the helical close-packing configurations of helical filaments. We show that the topology and composition of the close-packing landscape depends on the cross-sectional aspect ratio and is characterized by several distinct states of self-contact. We characterize the local density of these distinct states based on the notion of confinement within a ‘virtual’ cylindrical capillary, and show that states of optimal density vary strongly with the degree of anisotropy. While isotropic filaments are densest in a straight configuration, any measure of anisotropy leads to helicity of the maximal density state. We show the maximally dense states exhibit a sequence of transitions in helical geometry and cross-sectional tilt with increasing anisotropy, from spiral tape to spiral screw packings. Furthermore, we show that maximal capillary density saturates in a lower bound for volume fraction of π / 4 in the large-anisotropy, spiral-screw limit. While cross-sectional anisotropy is well-known to impact the mechanical properties of filaments, our study shows its strong effects to shape the configuration space and packing efficiency of this elementary material motif.

Funder

US National Science Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3