Low frequency twisted waves in a self-gravitating nonextensive complex plasma

Author:

Bukhari SORCID,Bukhari Asad,Shahid MORCID,Hussain A

Abstract

Abstract The effects of dust–dust self-gravitational force and nonextensive characteristics of plasma species on the low frequency twisted waves owing to the helical wave structure in complex (dusty) plasmas are analyzed. The electrons and ions of the plasma are modelled by nonextensive q-distribution function while massive dust particles are Maxwellian distributed. The self-gravitational effects are incorporated in the Vlasov equation of kinetic theory where perturbed distribution function, electrostatic and gravitational potentials are expressed with Laguerre–Gauss functions. The governing equations of kinetic theory are solved together under paraxial approximations. The dispersion relations and damping rates of twisted dust-acoustic waves (TDAWs) are obtained for two situations; (a) super-extensivity (q < 1) and (b) sub-extensivity (q > 1). The effects of self-gravity, nonextensivity and twist parameter significantly modified the basic features of dust-acoustic waves. This study contributes to our understanding of the complex dynamics of TDAWs in interstellar dust clouds, considering the interplay of self-gravity, nonextensivity, and helical phase structures. The obtained theoretical and numerical results provide valuable insights into the behavior of these waves and offer a foundation for further investigations in this field. However, understanding of the topic can be enhanced through a combination of theoretical models, numerical simulations and observational data.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3