A comprehensive neural networks study of the phase transitions of Potts model

Author:

Tan D-R,Li C-D,Zhu W-P,Jiang F-J

Abstract

Abstract Using the techniques of neural networks (NN), we study the three-dimensional (3D) five-state ferromagnetic Potts model on the cubic lattice as well as the two-dimensional (2D) three-state antiferromagnetic Potts model on the square lattice. Unlike the conventional approach, here we follow the idea employed by Li et al (2018 Ann. Phys., NY 391 312–331). Specifically, instead of numerically generating numerous objects for the training, the whole or part of the theoretical ground state configurations of the studied models are considered as the training sets. Remarkably, our investigation of these two models provides convincing evidence for the effectiveness of the method of preparing training sets used in this study. In particular, the results of the 3D model obtained here imply that the NN approach is as efficient as the traditional method since the signal of a first order phase transition, namely tunneling between two channels, determined by the NN method is as strong as that calculated with the Monte Carlo technique. Furthermore, the outcomes associated with the considered 2D system indicate even little partial information of the ground states can lead to conclusive results regarding the studied phase transition. The achievements reached in our investigation demonstrate that the performance of NN, using certain amount of the theoretical ground state configurations as the training sets, is impressive.

Funder

Ministry of Science and Technology, Taiwan

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3