Noise tailoring for robust amplitude estimation

Author:

Dalal ArchismitaORCID,Katabarwa AmaraORCID

Abstract

Abstract A universal fault-tolerant quantum computer holds the promise to speed up computational problems that are otherwise intractable on classical computers; however, for the next decade or so, our access is restricted to noisy intermediate-scale quantum (NISQ) computers and, perhaps, early fault tolerant (EFT) quantum computers. This motivates the development of many near-term quantum algorithms including robust amplitude estimation (RAE), which is a quantum-enhanced algorithm for estimating expectation values. One obstacle to using RAE has been a paucity of ways of getting realistic error models incorporated into this algorithm. So far the impact of device noise on RAE is incorporated into one of its subroutines as an exponential decay model, which is unrealistic for NISQ devices and, maybe, for EFT devices; this hinders the performance of RAE. Rather than trying to explicitly model realistic noise effects, which may be infeasible, we circumvent this obstacle by tailoring device noise using randomized compiling to generate an effective noise model, whose impact on RAE closely resembles that of the exponential decay model. Using noisy simulations, we show that our noise-tailored RAE algorithm is able to regain improvements in both bias and precision that are expected for RAE. Additionally, on IBM’s quantum computer ibmq_belem our algorithm demonstrates advantage over the standard estimation technique in reducing bias. Thus, our work extends the feasibility of RAE on NISQ computers, consequently bringing us one step closer towards achieving quantum advantage using these devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3