Relativistically transparent magnetic filaments: scaling laws, initial results and prospects for strong-field QED studies

Author:

Rinderknecht H GORCID,Wang T,Garcia A Laso,Bruhaug G,Wei M S,Quevedo H J,Ditmire T,Williams J,Haid A,Doria D,Spohr K M,Toncian T,Arefiev AORCID

Abstract

Abstract Relativistic transparency enables volumetric laser interaction with overdense plasmas and direct laser acceleration of electrons to relativistic velocities. The dense electron current generates a magnetic filament with field strength of the order of the laser amplitude (>105 T). The magnetic filament traps the electrons radially, enabling efficient acceleration and conversion of laser energy into MeV photons by electron oscillations in the filament. The use of microstructured targets stabilizes the hosing instabilities associated with relativistically transparent interactions, resulting in robust and repeatable production of this phenomenon. Analytical scaling laws are derived to describe the radiated photon spectrum and energy from the magnetic filament phenomenon in terms of the laser intensity, focal radius, pulse duration, and the plasma density. These scaling laws are compared to 3D particle-in-cell (PIC) simulations, demonstrating agreement over two regimes of focal radius. Preliminary experiments to study this phenomenon at moderate intensity (a 0 ∼ 30) were performed on the Texas Petawatt Laser. Experimental signatures of the magnetic filament phenomenon are observed in the electron and photon spectra recorded in a subset of these experiments that is consistent with the experimental design, analytical scaling and 3D PIC simulations. Implications for future experimental campaigns are discussed.

Funder

New York State Energy Research and Development Authority

Engineering and Physical Sciences Research Council

National Nuclear Security Administration

Air Force Office of Scientific Research

Fusion Energy Sciences

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3