Abstract
Abstract
For any storage ring-based large-scale scientific facility, one of the most important performance parameters is the dynamic aperture (DA), which measures the motion stability of charged particles in a global manner. To date, long-term tracking-based simulation is regarded as the most reliable method to calculate DA. However, numerical tracking may become a significant issue, especially when a plethora of candidate designs of a storage ring need to be evaluated. In this paper, we present a novel machine learning-based method, which can reduce the computation cost of DA tracking by approximately one order of magnitude, while keeping sufficiently high evaluation accuracy. Moreover, we demonstrate that this method is independent of concrete physical models of a storage ring. This method has the potential to be applied to similar problems of identifying irregular motions in other complex dynamical systems.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献