Author:
Bao Yicheng,Yu Scarlett S,Anderegg Loïc,Burchesky Sean,Gonzalez-Acevedo Derick,Chae Eunmi,Ketterle Wolfgang,Ni Kang-Kuen,Doyle John M
Abstract
Abstract
Optically trapped laser-cooled polar molecules hold promise for new science and technology in quantum information and quantum simulation. Large numerical aperture optical access and long trap lifetimes are needed for many studies, but these requirements are challenging to achieve in a magneto-optical trap (MOT) vacuum chamber that is connected to a cryogenic buffer gas beam source, as is the case for all molecule laser cooling experiments so far. Long distance transport of molecules greatly eases fulfilling these requirements as molecules are placed into a region separate from the MOT chamber. We realize a fast transport method for ultracold molecules based on an electronically focus-tunable lens combined with an optical lattice. The high transport speed is achieved by the 1D red-detuned optical lattice, which is generated by interference of a focus-tunable laser beam and a focus-fixed laser beam. Efficiency of 48(8)% is realized in the transport of ultracold calcium monofluoride (CaF) molecules over 46 cm distance in 50 ms, with a moderate heating from 32(2) μK to 53(4) μK. Positional stability of the molecular cloud allows for stable loading of an optical tweezer array with single molecules.
Funder
National Research Foundation of Korea
Air Force Office of Scientific Research
NSF Graduate Research Fellowship Program
National Science Foundation
Office of Science
Army Research Office
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献