Abstract
Abstract
Metalens with broadband and high-efficiency focusing functionality is desired in various underwater acoustic applications such as sonar and oceanography. Here we design and demonstrate a metagrating-based lens consisting of spatially sparse and wavelength-scale meta-atoms with optimized structures. With the help of grating diffraction analysis and intelligent optimization algorithm, the reflective metalens enables broadband and high-numerical-aperture focusing for waterborne sound over a 40 kHz-bandwidth for working frequency at 200 kHz. Full-wave numerical simulations unambiguously verify a sharp and high-efficiency focusing of sound wave intensity, with the full width at half maximum at the focal spot being smaller than 0.5λ and thus beating the Rayleigh–Abbe diffraction limit. Our work not only provides an intelligent design paradigm of high-performance metalens, but also presents a potential solution for the development of planar acoustic devices for high-resolution applications.
Funder
Guangdong Basic and Applied Basic Research Foundation
Guangdong Province Key Research & Development Program
Subject
General Physics and Astronomy
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献