Gauge protection in non-abelian lattice gauge theories

Author:

Halimeh Jad CORCID,Lang Haifeng,Hauke Philipp

Abstract

Abstract Protection of gauge invariance in experimental realizations of lattice gauge theories based on energy-penalty schemes has recently stimulated impressive efforts both theoretically and in setups of quantum synthetic matter. A major challenge is the reliability of such schemes in non-abelian gauge theories where local conservation laws do not commute. Here, we show through exact diagonalization (ED) that non-abelian gauge invariance can be reliably controlled using gauge-protection terms that energetically stabilize the target gauge sector in Hilbert space, suppressing gauge violations due to unitary gauge-breaking errors. We present analytic arguments that predict a volume-independent protection strength V, which when sufficiently large leads to the emergence of an adjusted gauge theory with the same local gauge symmetry up to least a timescale V / V 0 3 . Thereafter, a renormalized gauge theory dominates up to a timescale ∝exp(V/V 0)/V 0 with V 0 a volume-independent energy factor, similar to the case of faulty abelian gauge theories. Moreover, we show for certain experimentally relevant errors that single-body protection terms robustly suppress gauge violations up to all accessible evolution times in ED, and demonstrate that the adjusted gauge theory emerges in this case as well. These single-body protection terms can be readily implemented with fewer engineering requirements than the ideal gauge theory itself in current ultracold-atom setups and noisy intermediate-scale quantum (NISQ) devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3