Pressure-induced shift of effective Ce valence, Fermi energy and phase boundaries in CeOs4Sb12

Author:

Götze KORCID,Pearce M J,Coak M JORCID,Goddard P AORCID,Grockowiak A DORCID,Coniglio W AORCID,Tozer S W,Graf D E,Maple M BORCID,Ho P-CORCID,Brown M C,Singleton JORCID

Abstract

Abstract CeOs4Sb12, a member of the skutterudite family, has an unusual semimetallic low-temperature L -phase that inhabits a wedge-like area of the field H—temperature T phase diagram. We have conducted measurements of electrical transport and megahertz conductivity on CeOs4Sb12 single crystals under pressures of up to 3 GPa and in high magnetic fields of up to 41 T to investigate the influence of pressure on the different HT phase boundaries. While the high-temperature valence transition between the metallic H -phase and the L -phase is shifted to higher T by pressures of the order of 1 GPa, we observed only a marginal suppression of the S -phase that is found below 1 K for pressures of up to 1.91 GPa. High-field quantum oscillations have been observed for pressures up to 3.0 GPa and the Fermi surface of the high-field side of the H -phase is found to show a surprising decrease in size with increasing pressure, implying a change in electronic structure rather than a mere contraction of lattice parameters. We evaluate the field-dependence of the effective masses for different pressures and also reflect on the sample dependence of some of the properties of CeOs4Sb12 which appears to be limited to the low-field region.

Funder

National Science Foundation

Engineering and Physical Sciences Research Council

H2020 European Research Council

US Department of Energy

Florida Department of State

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Truncated mass divergence in a Mott metal;Proceedings of the National Academy of Sciences;2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3