Controlling photonic spin Hall effect in graphene-dielectric structure by optical pumping

Author:

Dong Peng,Cheng JieORCID,Da Haixia,Yan Xiaohong

Abstract

Abstract The photonic spin Hall effect (SHE) provides an effective way to manipulate the spin-polarized photons. However, the spin-dependent splitting is very tiny due to the weak spin–orbit coupling, and previous investigations for enhancing this phenomenon have some serious limitations (e.g. inconvenient to tune, inadequate attention in terahertz region). Therefore, controlling and enhancing the photonic SHE in a flexible way is highly desirable, especially for terahertz region. In this contribution, we propose a method to manipulate the photonic SHE by taking advantage of tunable optical properties of graphene via weak optical pumping. We find that photonic SHE of graphene-dielectric structure in terahertz region is quite sensitive to the pumping power. The spin shift for H polarized incident beam can reach its upper limitation under the optimal pumping power, which is related to the zero value of the real part of graphene conductivity. These findings may provide a new degree of freedom for the design of tunable spin-based photonic devices in the future.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Six Categories of Summit Talents of Jiangsu Province of China

Training program of the Key and Major Research plan of NUPT

National Natural Science Foundation of China

Jiangsu Specially Appointed Professor Plan

NUPTSF

Major Program of Natural Science Foundation by the Ministry of Education of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3