Abstract
Abstract
We introduce CircuitQ, an open-source toolbox for the analysis of superconducting circuits implemented in Python. It features the automated construction of a symbolic Hamiltonian of the input circuit and a dynamic numerical representation of the Hamiltonian with a variable basis choice. The software implementation is capable of choosing the basis in a fully automated fashion based on the potential energy landscape. Additional features include the estimation of the T
1 lifetimes of the circuit states under various noise mechanisms. We review previously established circuit quantization methods and formulate them in a way that facilitates the software implementation. The toolbox is then showcased by applying it to practically relevant qubit circuits and comparing it to specialized circuit solvers. Our circuit quantization is applicable to circuit inputs from a large design space, and the software is open-sourced. We thereby add an important resource for the design of new quantum circuits for quantum information processing applications.
Funder
Austrian Science Fund
Hauser-Raspe Foundation
Horizon 2020 Framework Programme
Defense Advanced Research Projects Agency
Office of the Director of National Intelligence
Intelligence Advanced Research Projects Activity
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献