The dynamics of cooperation in asymmetric sub-populations

Author:

Guo H,Li X,Hu K,Dai X,Jia D,Boccaletti S,Perc MORCID,Wang Z

Abstract

Abstract Sacrificing personal benefits for a common good is at odds with the fundamental principle of Darwinian evolution: if only the fittest survives, then there should be no place for cooperation. But cooperative behavior actually abounds, and constitutes one of the most persistent and fascinating puzzles of nature. One solution to this puzzle is network reciprocity, where the collective dynamics of cooperators affords them protection against invading defectors. Commonly, however, such a competition does not unfold in isolation. Populations are often divided into sub-populations, with different evolutionary rules describing the interactions between them. Here we propose and study a paradigmatic model that captures the essence of this setup. Specifically, if two players belong to the same sub-population, they play the prisoner’s dilemma game. If not, they play either the harmony game, the snowdrift game, the stag-hunt game, or the prisoner’s dilemma game. Due to such an asymmetry in the interactions across sub-populations, a fascinating evolutionary dynamics sets up that greatly expands the survivability of cooperators. For instance, when the harmony game applies, cyclic dominance spontaneously emerges, wherein cooperators in one sub-population become predators of defectors in the other sub-population. One also may observe self-organized segregation, wherein both sub-populations maintain a mixed state of cooperators and defectors. As a general rule, we show that the lower the dilemma strength between sub-populations, the more abundant the cooperative strategy in the entire population. Results are confirmed by means of Monte Carlo simulations with pair approximation method, which reveals a rich plethora of novel and generally valid paths to cooperation.

Funder

Key Area R \& D Program of Shannxi Province

Key Area R \& D Program of Guangdong Province

Slovenian Research Agency

National 1000 Young Talent Plan

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3