Nonlinear saturation and oscillations of collisionless zonal flows

Author:

Zhu HongxuanORCID,Zhou YaoORCID,Dodin I YORCID

Abstract

Abstract In homogeneous drift-wave turbulence, zonal flows (ZFs) can be generated via a modulational instability (MI) that either saturates monotonically or leads to oscillations of the ZF energy at the nonlinear stage. This dynamics is often attributed as the predator–prey oscillations induced by ZF collisional damping; however, similar dynamics is also observed in collisionless ZFs, in which case a different mechanism must be involved. Here, we propose a semi-analytic theory that explains the transition between the oscillations and saturation of collisionless ZFs within the quasilinear Hasegawa–Mima model. By analyzing phase-space trajectories of DW quanta (driftons) within the geometrical-optics (GO) approximation, we argue that the parameter that controls this transition is N ∼ γ MI/ω DW, where γ MI is the MI growth rate and ω DW is the linear DW frequency. We argue that at N ≪ 1, ZFs oscillate due to the presence of so-called passing drifton trajectories, and we derive an approximate formula for the ZF amplitude as a function of time in this regime. We also show that at N ≳  1, the passing trajectories vanish and ZFs saturate monotonically, which can be attributed to phase mixing of higher-order sidebands. A modification of N that accounts for effects beyond the GO limit is also proposed. These analytic results are tested against both quasilinear and fully-nonlinear simulations. They also explain the earlier numerical results by Connaughton et al (2010 J. Fluid Mech. 654 207) and Gallagher et al (2012 Phys. Plasmas 19 122115) and offer a different perspective on what the control parameter actually is that determines the transition from the oscillations to saturation of collisionless ZFs.

Funder

Fusion Energy Sciences

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3