Abstract
Abstract
We report on a comparative analysis of quenched sideband cooling in trapped ions. We introduce a theoretical approach for time-efficient simulation of the temporal cooling characteristics and derive the optimal conditions providing fast laser cooling into the ion’s motional ground state. The simulations were experimentally benchmarked with a single 172Yb+ ion confined in a linear Paul trap. Sideband cooling was carried out on a narrow quadrupole transition, enhanced with an additional clear-out laser for controlling the effective linewidth of the cooling transition. Quench cooling was thus for the first time studied in the resolved sideband, intermediate and semi-classical regime. We discuss the non-thermal distribution of Fock states during laser cooling and reveal its impact on time dilation shifts in optical atomic clocks.
Funder
Russian Science Foundation
Ministry of Science and Higher Education of the Russian Federation
Deutsche Forschungsgemeinschaft
EMPIR
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献