Abstract
Abstract
We discuss quantum position verification (QPV) protocols in which the verifiers create and send single-qubit states to the prover. QPV protocols using single-qubit states are known to be insecure against adversaries that share a small number of entangled qubits. We introduce QPV protocols that are practically secure: they only require single-qubit states from each of the verifiers, yet their security is broken if the adversaries sharing an impractically large number of entangled qubits employ teleportation-based attacks. These protocols are a modification of known QPV protocols in which we include a classical random oracle without altering the amount of quantum resources needed by the verifiers. We present a cheating strategy that requires a number of entangled qubits shared among the adversaries that grows exponentially with the size of the classical input of the random oracle.
Funder
Office of Multidisciplinary Activities
Office of Naval Research
Army Research Office
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献