Abstract
Abstract
Digital computers implement computations using circuits, as do many naturally occurring systems (e.g., gene regulatory networks). The topology of any such circuit restricts which variables may be physically coupled during the operation of the circuit. We investigate how such restrictions on the physical coupling affects the thermodynamic costs of running the circuit. To do this we first calculate the minimal additional entropy production that arises when we run a given gate in a circuit. We then build on this calculation, to analyze how the thermodynamic costs of implementing a computation with a full circuit, comprising multiple connected gates, depends on the topology of that circuit. This analysis provides a rich new set of optimization problems that must be addressed by any designer of a circuit, if they wish to minimize thermodynamic costs.
Funder
FQXi
National Science Foundation
Subject
General Physics and Astronomy
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献