Abstract
Abstract
Unlike tremendous works on the electronic structures of tetradymite compounds, studies of their thermal properties are relatively rare. Here, first-principles calculations and Boltzmann theory are combined to investigate the phonon transport of such kind of layered materials. Using four binary tetradymites as prototypical examples, it is interesting to find that the weak van der Waals (vdW) interactions play an important role in determining their lattice thermal conductivities, which are obviously higher than those without the consideration of vdW, especially for the out-of-plane direction. In principle, such enhanced phonon transport can be attributed to the decreased interlayer spacing caused by the presence of vdW, which effectively reduces the strong anharmonicity of the systems. Indeed, we observe relatively smaller Grüneisen parameter together with larger phonon group velocity and relaxation time. Our theoretical work demonstrates the vital importance of the seemingly weak vdW forces in predicting the phonon transport properties of various layered structures.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献