Abstract
Abstract
Using molecular dynamics simulations, we study a driven, nonadditive binary mixture of spherical particles confined to move in two dimensions and immersed in an explicit solvent consisting of point particles with purely repulsive interactions. We show that, without a drive, the mixture of spherical particles phase separates and coarsens with kinetics consistent with an Ising-like conserved dynamics. Conversely, when the drive is applied, the coarsening is arrested and the system develops large density fluctuations. We show that the drive creates domains of a characteristic size which decreases with an increasing force. Furthermore, we find that these domains are anisotropic and can be oriented either parallel or perpendicular to the drive direction. Finally, we connect our findings to existing theories of strongly-driven systems, pointing out the importance of introducing the explicit solvent particles to break the Galilean invariance of the system.
Funder
Basic Energy Sciences
Division of Molecular and Cellular Biosciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献