Abstract
Abstract
We propose an extended Bogoliubov transformation in real space for spinless fermions, based on which a class of Kitaev chains of length 2N with zero chemical potential can be mapped to two independent Kitaev chains of length N. It provides an alternative way to investigate a complicated system from the result of relatively simple systems. We demonstrate the implications of this decomposition by a Su–Schrieffer–Heeger Kitaev model, which supports rich quantum phases. The features of the system, including the groundstate topology and nonequilibrium dynamics, can be revealed directly from that of sub-Kitaev chains. Based on this connection, two types of Bardeen–Cooper–Schrieffer (BCS)-pair order parameters are introduced to characterize the phase diagram, showing the ingredient of two different BCS pairing modes. Analytical analysis and numerical simulations show that the real-space decomposition for the ground state still holds true approximately in presence of finite chemical potential in the gapful regions.
Funder
National Natural Science Foundation of China