Abstract
Abstract
Interlayer exchange-coupled synthetic antiferromagnets (SAFs) have the combined advantages of both high frequency of antiferromagnets and easy detection of ferromagnets. Here, magnetic excitations are investigated by theoretical analysis and micromagnetic simulations in SAFs that consist of two identical ferromagnetic layers with perpendicular magnetic anisotropy. Different from the common in-phase acoustic mode and out-of-phase optic mode, linearly or circularly polarized spin wave modes can be excited at zero bias field by using different types of microwave magnetic fields. Once a bias magnetic field is applied along the easy-axis, left-handed (LH) and right-handed (RH) polarization modes are observed, and the resonance frequency of RH (LH) mode of the SAFs increases (decreases) linearly with the increase of bias magnetic fields until a critical spin-flop field is reached, which is in accordance with collinear antiferromagnets with easy-axis anisotropy. These simulation results agree with the theoretical derivation and provide fundamental insight into the nature of dynamic properties of the perpendicularly magnetized SAFs, which may provide new prospects for spintronic applications.
Funder
National Natural Science Foundation of China
National Key Research and Development Project of China
Subject
General Physics and Astronomy
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献