Signatures of superconducting triplet pairing in Ni–Ga-bilayer junctions

Author:

Costa AndreasORCID,Sutula Madison,Lauter ValeriaORCID,Song Jia,Fabian JaroslavORCID,Moodera Jagadeesh SORCID

Abstract

Abstract Ni–Ga bilayers are a versatile platform for exploring the competition between strongly antagonistic ferromagnetic and superconducting phases. We characterize the impact of this competition on the transport properties of highly-ballistic Al/Al2O3(/EuS)/Ni–Ga tunnel junctions from both experimental and theoretical points of view. While the conductance spectra of junctions comprising Ni (3 nm)–Ga (60 nm) bilayers can be well understood within the framework of earlier results, which associate the emerging main conductance maxima with the junction films’ superconducting gaps, thinner Ni (1.6 nm)–Ga (30 nm) bilayers entail completely different physics, and give rise to novel large-bias (when compared to the superconducting gap of the thin Al film as a reference) conductance-peak subseries that we term conductance shoulders. These conductance shoulders might attract considerable attention also in similar magnetic superconducting bilayer junctions, as we predict them to offer an experimentally well-accessible transport signature of superconducting triplet pairings that are induced around the interface of the Ni–Ga bilayer. We further substantiate this claim performing complementary polarized neutron reflectometry measurements on the bilayers, from which we deduce (1) a nonuniform magnetization structure in Ga in a several nanometer-thick area around the Ni–Ga boundary and can simultaneously (2) satisfactorily fit the obtained data only considering the paramagnetic Meissner response scenario. While the latter provides independent experimental evidence of induced triplet superconductivity inside the Ni–Ga bilayer, the former might serve as the first experimental hint of its potential microscopic physical origin. Finally, we introduce a simple phenomenological toy model to confirm also from the theoretical standpoint that superconducting triplet pairings around the Ni–Ga interface can indeed lead to the experimentally observed conductance shoulders, which convinces that our claims are robust and physically justified. Arranging our work in a broader context, we expect that Ni–Ga-bilayer junctions could have a strong potential for future superconducting-spintronics applications whenever an efficient engineering of triplet-pairing superconductivity is required.

Funder

NSF DMR

ONR

NSF C-Accel. Track C

UROP Program at MIT

Deutsche Forschungsgemeinschaft

Elitenetzwerk Bayern

John Templeton Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3