Electronic structure of rare-earth mononitrides: quasiatomic excitations and semiconducting bands

Author:

Galler AnnaORCID,Pourovskii Leonid VORCID

Abstract

Abstract The electronic structure of the rare-earth mononitrides LnN (where Ln = rare-earth), which are promising materials for future spintronics applications, is difficult to resolve experimentally due to a strong influence of defects on their transport and optical properties. At the same time, LnN are challenging for theory, since wide semiconducting 2p and 5d bands need to be described simultaneously with strongly correlated 4f states. Here, we calculate the many-body spectral functions and optical gaps of a series of LnN (with Ln = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) by a density-functional + dynamical mean-field theory (DFT + DMFT) approach treating the correlated Ln 4f shells within the quasi-atomic Hubbard-I approximation. The on-site Coulomb interaction in the 4f shell is evaluated by a constrained DFT + Hubbard-I approach. Furthermore, to improve the treatment of semiconducting bands in DFT + DMFT, we employ the modified Becke–Johnson semilocal exchange potential. Focusing on the paramagnetic high-temperature phase, we find that all investigated LnN are pd semiconductors with gap values ranging from 1.02 to 2.14 eV along the series. The pd band gap is direct for light Ln = La…Sm and becomes indirect for heavy rare-earths. Despite a pronounced evolution of the Ln 4f states along the series, empty 4f states are invariably found above the bottom of the 5d conduction band. The calculated spectra agree well with those available from x-ray photoemission, x-ray emission and x-ray absorption measurements.

Funder

Austrian Science Fund

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3