An optimization problem for maximum vibration suppression in reconfigurable one dimensional metamaterials

Author:

Stearns AaronORCID,Beck BenjaminORCID

Abstract

Abstract Acoustic metamaterials have already been shown to be effective for vibration reduction and control. Local resonances in the metamaterial cause waves at frequencies within band gaps to become evanescent, thus preventing wave propagation through the material. Active and adaptable local resonances enables the band gaps to be shifted in frequency and increased in bandwidth. Since metamaterial local resonances are usually composite, methods to specify optimal component configurations are helpful for passive metamaterials and almost necessary for adaptable metamaterials, where the metamaterial must be reconfigured for optimal performance at various frequency ranges. To assess band gap locations and bandwidths for metamaterials, a wavenumber spectrum is commonly computed. Commonly, a parameter study of adaptable unit cell variables will be performed to assess optimal configurations of adaptable metamaterials. In this paper, the complex wavenumber is proposed as a direct optimization objective for reconfiguration of active adaptable acoustic metamaterials for maximum vibration suppression at a frequency range of choice. By directly maximizing the imaginary part of the wavenumber, associated with wave attenuation, the unit cell configuration maximum vibration suppression can be obtained for an operating frequency of choice. Additionally, since the optimization problem requires constraints for feasible solutions and the example active piezoelectric metamaterial system shown here is electrically unstable at some configurations, we also explore an experimental method for bounding the optimization problem. Numerical results of the optimization problem are presented.

Funder

Naval Undersea Warfare Center

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3