Inverse design of sub-diffraction focusing metalens by adjoint-based topology optimization

Author:

Dong Lianhong,Kong WeijieORCID,Wang Changtao,Luo Guoyu,Pu Mingbo,Ma Xiaoliang,Li Xiong,Luo XiangangORCID

Abstract

Abstract Breaking the diffraction limit to realize imaging at the nanoscale is challenging in scientific research. Traditional sub-diffraction focusing metalens is obtained by arranging artificially selected unit cells, of which the design process is passive and complex. This paper brings up an inverse design idea of planar sub-diffraction focusing metalens based on super-oscillatory theory to solve these problems, starting from a desired focusing performance. The sub-diffraction focusing metalens is then obtained by iterative topology optimization with different initial structures. We introduce the adjoint-based topology inverse optimization into the structural design of sub-diffraction focusing metalens, which provides another way to design a sub-diffraction metalens for far-field unmarked super-resolution imaging. Based on this idea, we achieve a sub-diffraction focusing characterized by a focal radius of 0.75 times the Rayleigh diffraction limit, optimizing from a diffraction-limited focusing metalens. Moreover, focal radii between 0.63 and 0.73 times the Rayleigh diffraction limit are achieved by optimizing 11 sets of random initial metasurface structures with even no focusing performance. The results indicate that our method is independent of the initial structure distribution, which can be extended to the inverse design of other functional metasurfaces in imaging, lithography, and other fields.

Funder

Sichuan Science and Technology Program

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3