Phase diagram, stability and magnetic properties of nonlinear excitations in spinor Bose–Einstein condensates

Author:

Katsimiga G C,Mistakidis S IORCID,Schmelcher PORCID,Kevrekidis P GORCID

Abstract

Abstract We present the phase diagram, the underlying stability and magnetic properties as well as the dynamics of nonlinear solitary wave excitations arising in the distinct phases of a harmonically confined spinor F = 1 Bose–Einstein condensate. Particularly, it is found that nonlinear excitations in the form of dark–dark–bright solitons exist in the antiferromagnetic and in the easy-axis phase of a spinor gas, being generally unstable in the former while possessing stability intervals in the latter phase. Dark–bright–bright solitons can be realized in the polar and the easy-plane phases as unstable and stable configurations respectively; the latter phase can also feature stable dark–dark–dark solitons. Importantly, the persistence of these types of states upon transitioning, by means of tuning the quadratic Zeeman coefficient from one phase to the other is unravelled. Additionally, the spin-mixing dynamics of stable and unstable matter waves is analyzed, revealing among others the coherent evolution of magnetic dark–bright, nematic dark–bright–bright and dark–dark–dark solitons. Moreover, for the unstable cases unmagnetized or magnetic droplet-like configurations and spin-waves consisting of regular and magnetic solitons are seen to dynamically emerge remaining thereafter robust while propagating for extremely large evolution times. Interestingly, exposing spinorial solitons to finite temperatures, their anti-damping in trap oscillation is showcased. It is found that the latter is suppressed for stronger bright soliton component ‘fillings’. Our investigations pave the wave for a systematic production and analysis involving spin transfer processes of such waveforms which have been recently realized in ultracold experiments.

Funder

Lenz-Ising Award of the University of Hamburg

Alexander von Humboldt Foundation

Leverhulme Trust

SFB 925 “Light induced dynamics and control of correlated quantum systems”

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3