Abstract
Abstract
Observational entropy provides a general notion of quantum entropy that appropriately interpolates between Boltzmann’s and Gibbs’ entropies, and has recently been argued to provide a useful measure of out-of-equilibrium thermodynamic entropy. Here we study the mathematical properties of observational entropy from an information-theoretic viewpoint, making use of recently strengthened forms of the monotonicity property of quantum relative entropy. We present new bounds on observational entropy applying in general, as well as bounds and identities related to sequential and post-processed measurements. A central role in this work is played by what we call the ‘coarse-grained’ state, which emerges from the measurement’s statistics by Bayesian retrodiction, without presuming any knowledge about the ‘true’ underlying state being measured. The degree of distinguishability between such a coarse-grained state and the true (but generally unobservable) one is shown to provide upper and lower bounds on the difference between observational and von Neumann entropies.
Funder
MEXT Quantum Leap Flagship Program
Institute for Basic Science
Spanish Plan de Recuperación, Transformación y Resiliencia
MEXT-JSPS Grant-in-Aid for Transformative Research Areas (A) ``Extreme Universe’'
JSPS KAKENHI
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献