Abstract
Abstract
The characteristics of field electron and ion emission change when the space charge formed by the emitted charge is sufficient to suppress the extracting electric field. This phenomenon is well described for planar emitting diodes by the one dimensional (1D) theory. Here we generalize for any 3D geometry by deriving the scaling laws describing the field suppression in the weak space charge regime. We propose a novel corrected equivalent planar diode model, which describes the space charge effects for any geometry in terms of the 1D theory, utilizing a correction factor that adjusts the diode’s scaling characteristics. We then develop a computational method, based on the particle-in-cell (PIC) technique, which solves numerically the space charge problem. We validate our theory by comparing it to both our numerical calculations and existing experimental data, either of which can be used to obtain the geometrical correction factor of the corrected equivalent planar diode model.
Funder
CERN
Horizon 2020 Framework Programme
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献