Abstract
Abstract
We apply quantum optimal control to shape the phase-space distribution of Bose–Einstein condensates in a one-dimensional optical lattice. By a time-dependent modulation of the lattice position, determined from optimal control theory, we prepare, in the phase space of each lattice site, translated and squeezed Gaussian states, and superpositions of Gaussian states. Complete reconstruction of these non-trivial states is performed through a maximum likelihood state tomography. As a practical application of our method to quantum simulations, we initialize the atomic wavefunction in an optimal Floquet-state superposition to enhance dynamical tunneling signals.
Funder
Agence Nationale de la Recherche
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献