Quantifying the intrinsic randomness in sequential measurements

Author:

Liu Xinjian,Wang Yukun,Han Yunguang,Wu Xia

Abstract

Abstract In the standard Bell scenario, when making a local projective measurement on each system component, the amount of randomness generated is restricted. However, this limitation can be surpassed through the implementation of sequential measurements. Nonetheless, a rigorous definition of random numbers in the context of sequential measurements is yet to be established, except for the lower quantification in device-independent scenarios. In this paper, we define quantum intrinsic randomness in sequential measurements and quantify the randomness in the Collins–Gisin–Linden–Massar–Popescu inequality sequential scenario. Initially, we investigate the quantum intrinsic randomness of the mixed states under sequential projective measurements and the intrinsic randomness of the sequential positive-operator-valued measure (POVM) under pure states. Naturally, we rigorously define quantum intrinsic randomness under sequential POVM for arbitrary quantum states. Furthermore, we apply our method to one-Alice and two-Bobs sequential measurement scenarios, and quantify the quantum intrinsic randomness of the maximally entangled state and maximally violated state by giving an extremal decomposition. Finally, using the sequential Navascues–Pironio–Acin hierarchy in the device-independent scenario, we derive lower bounds on the quantum intrinsic randomness of the maximally entangled state and maximally violated state.

Funder

Natural Science Foundation of Jiangsu Province

State Key Laboratory of Cryptology

National Natural Science Foundation of China

Science Foundation of China University of Petroleum, Beijing

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3