Asymmetric full mode-converting transmission of elastic waves

Author:

Chai YijunORCID,Yao Shengjie,Yang XiongweiORCID,Li Yueming

Abstract

Abstract Asymmetric transmission in which wave energy propagates only in one direction attracts significant attention in various fields because of its rich physics and potential applications. In this work, we propose an elastic mode-converting metamaterial, which allows a full-power mode-converting transmission from longitudinal waves to transverse waves in the forward direction, while completely restricts the L wave transmission in the inverse direction. The metamaterial is designed by simply cutting two arrays of periodic silts on a matrix by exploring a straight design methodology, and thus very friendly for fabrication and application. Eigen-frequency analysis shows that the bilayer metamaterial exhibits two modes with significantly close natural frequencies around the working frequency, one for full-power mode-converting transmission, and the other for asymmetric transmission. Ultrasonic experiments are carried out to validate the proposed design. Our work offers a simple and efficient way for the realization of a complete one-way mode-converting transmission, and could be critically useful in designing diode-like meta-devices for novel wave manipulations.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3