Spin–orbit proximity effect and topological superconductivity in graphene/transition-metal dichalcogenide nanoribbons

Author:

Wang Zhen-Hua,Xu Fuming,Li Lin,Xu Dong-Hui,Chen Wei-Qiang,Wang BinORCID,Guo Hong

Abstract

Abstract Spin–orbit coupling (SOC) plays a determinate role in spintronics and topological physics. Previous studies indicate that the SOC in graphene nanoribbon (GNR) can be enhanced by the proximity effect from two-dimensional transition-metal dichalcogenide (2D-TMD). However, the bulk inversion symmetry of GNR/2D-TMD restricts further increase of the proximity-induced SOC in GNR. In this view, we introduce a TMD nanoribbon (TMDNR) with finite width, and propose three methods to break the bulk inversion symmetry, i.e. defects in TMDNR, spatial interlayer edge coupling, and twist between GNR and TMDNR, which can further enhance the SOC in the GNR by roughly 30 times, 20 times and 150 times, respectively, depending on the relative energy between the Dirac point of GNR and the states of TMDNR. Furthermore, the significantly enhanced SOC can drive the GNR into a topological superconducting phase. By introducing the Zeeman splitting and s-wave superconductivity in the GNR, quasi one-dimensional topological superconductivity and Majorana zero modes (MZMs) can be achieved in the GNR. At last we propose a feasible experimental method to realize and manipulate MZMs in the GNR/TMDNR system.

Funder

Shenzhen Natural Science Foundation

National Natural Science Foundation of China

Science, Technology and Innovation Commission of Shenzhen Municipality

Guangdong Basic and Applied Basic Research Foundation

Natural Science Foundation of Guangdong Province

The Project of Sichuan Science and Technology Program

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Majorana zero mode assisted spin pumping;Frontiers of Physics;2024-05-16

2. Mixed pairing states of honeycomb model;Physica C: Superconductivity and its Applications;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3