Device-independent self-testing of unsharp measurements

Author:

Roy Prabuddha,Pan A KORCID

Abstract

Abstract Semi-device-independent certification of an unsharp instrument has recently been demonstrated (2019 New J. Phys. 21 083034) based on the sequential sharing of quantum advantages in a prepare-measure communication game by assuming the system to be qubit. In this work, we provide device-independent (DI) self-testing of the unsharp instrument through the quantum violation of two Bell inequalities where the devices are uncharacterized and the dimension of the system remains unspecified. We introduce an elegant sum-of-squares approach to derive the dimension-independent optimal quantum violation of Bell inequalities which plays a crucial role. Note that the standard Bell test cannot self-test the post-measurement states and consequently cannot self-test unsharp instrument. The sequential Bell test possess the potential to self-test an unsharp instrument. We demonstrate that there exists a trade-off between the maximum sequential quantum violations of the Clauser–Horne–Shimony–Holt inequality, and they form an optimal pair that enables the DI self-testing of the entangled state, the observables, and the unsharpness parameter. Further, we extend our study to the case of elegant Bell inequality and we argue that it has two classical bounds—the local bound and the non-trivial preparation non-contextual bound, lower than the local bound. Based on the sharing of preparation contextuality by three independent sequential observers, we demonstrate the DI self-testing of two unsharpness parameters. Since an actual experimental scenario involves losses and imperfection, we demonstrate robustness of our certification to noise.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3