Abstract
Abstract
We derive a light–matter interaction Hamiltonian to describe a quantum system embedded in a dispersive environment and coupled with the electromagnetic field. We include in this theory the spatial extension of the system, taken into account through its wavefunction. This enables us to overcome the divergence problem of the Green tensor propagator that arises from a point-like approximation of the quantum system. Thus the formalism can be applied to generalize the expressions for the spontaneous emission rate and the Lamb shift for a quantum system defined by a spatially extended dipole. In particular, these quantities can be modified by the asymmetry of the spatial structure of the atomic system as demonstrated in two test-bed examples.
Funder
Italian National Group of Mathematical Physics
Polish National Agency for Academic Exchange
QuantERA ERA-NET Cofund in Quantum Technologies
Narodowe Centrum Nauki
Ministero dell’Istruzione, dell’Università e della Ricerca
Instituto Nazionale di Fisica Nucleare
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献