Self-organized neuronal subpopulations and network morphology underlying superbursts

Author:

Kim Byoungsoo,Lee Kyoung J

Abstract

Abstract Neural bursts are an important phenomenon that needs to be understood for their relevance to many different neurological diseases as well as neural computations. While there are different types of neuronal bursts, in this study we investigate the nature of population (as opposed to intrinsic cell-level) bursts, in particular, superbursts (SBs) that are a small (∼100 ms) packet of several population bursts (PBs). It has been suggested that neuronal PBs occur when there exists a delicate balance of system-wide excitation and inhibition and when recurrent excitation loops exist in the network. However, there has been no rigorous investigation on the relation between network morphology and (super)burst dynamics. Here we investigate the important issue based on a well-established Izhikevich network model of integrate-fire neurons. We have employed the overall conduction delay as our control parameter for tuning network morphology as well as its matching burst dynamics. Interestingly, we found that initially identical neurons self-organize to develop several distinct neuronal subpopulations, which are characterized by different spike firing patterns as well as local network properties. Moreover, a few different motifs of SB emerge according to a distinct mixture of neuronal subpopulations that, on average, fire at slightly different phases. Our analyses suggest that recurring motifs of different SBs reflect complex yet organized modular structures of different subpopulations.

Funder

National Research Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3