Abstract
Abstract
When a quantum system is sent through a noisy channel, it is usually disturbed. At the same time, the system undergoes decoherence and tends to lose some delicate quantum features. For a particular basis, the coherence of the state changes. Otherwise, if the system is not disturbed, its state might retain all of coherence. As quantum noisy channels lead to both disturbance and decoherence, it is natural to ask about the relation between disturbance and decoherence. Recently, a trade-off relation for coherence and disturbance has been presented by Sharma and Pati (2018 Phys. Rev. A 97 062308). In this paper, with entangled photon pairs and linear optics, we experimentally verify this trade-off relation for a single-qubit system undergoing various noisy channels. Our experimental results agree with the theoretical predictions and provide a quantitative understanding of the relation between quantum channels and resources.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献