Hamiltonian switching control of noisy bipartite qubit systems

Author:

Yang ZhiboORCID,Kosut Robert LORCID,Birgitta Whaley KORCID

Abstract

Abstract We develop a Hamiltonian switching ansatz for bipartite control that is inspired by the quantum approximate optimization algorithm, to mitigate environmental noise on qubits. We demonstrate the control for a central spin coupled to bath spins via isotropic Heisenberg interactions, and then make physical applications to the protection of quantum gates performed on superconducting transmon qubits coupling to environmental two-level-systems (TLSs) through dipole-dipole interactions, as well as on such qubits coupled to both TLSs and a Lindblad bath. The control field is classical and acts only on the system qubits. We use reinforcement learning with policy gradient to optimize the Hamiltonian switching control protocols, using a fidelity objective for specific target quantum gates. We use this approach to demonstrate effective suppression of both coherent and dissipative noise, with numerical studies achieving target gate implementations with fidelities over 0.9999 (four nines) in the majority of our test cases and showing improvement beyond this to values of 0.999 999 999 (nine nines) upon a subsequent optimization by GRadient Ascent Pulse Engineering (GRAPE). We analyze how the control depth, total evolution time, number of environmental TLS, and choice of optimization method affect the fidelity achieved by the optimal protocols and reveal some critical behaviors of bipartite control of quantum gates.

Funder

Army Research Office

Google Quantum Research Award

U.S. Department of Energy (DOE) under STTR Contract

U.S. Department of Energy (DOE) under the Quantum Systems Accelerator Program

Publisher

IOP Publishing

Reference63 articles.

1. Quantum computing in the NISQ era and beyond;Preskill;Quantum,2018

2. Controlling open quantum systems: tools, achievements and limitations;Koch;J. Phys.: Condens. Matter,2016

3. A quantum approximate optimization algorithm;Farhi,2014

4. Reinforcement learning in different phases of quantum control;Bukov;Phys. Rev. X,2018

5. universal quantum control through deep reinforcement learning;Niu;npj Quantum Inf.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3