Abstract
Abstract
Linear carbon-based materials such as polyyne and cumulene oligomers provide a versatile platform for nano-physics and engineering. Direct gap quasi-1D polyyne structures are promising for the observation of strong and unusual excitonic effects arising due to the two-dimensional quantum confinement. Recently, we reported on the observation of sharp exciton peaks in low temperature photoluminescence spectra of polyyne chains (Kutrovskaya S et al 2020 Nano Lett.
20 6502–9). Here, we analyze the time-resolved optical response of this system. We extend the non-local dielectric response theory to predict the exciton radiative lifetime dependence on the band-gap value and on the length of the chain. A good agreement between the experiment and the theory is achieved.
Funder
Russian Foundation for Basic Research
Russian Science Foundation
Grant of the President of the Russian Federation
Westlake University
Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang
State assignment VlSU
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Excitons in nanoscale semiconductor structures;Encyclopedia of Condensed Matter Physics;2024